Заземление: определение понятия, для чего нужно, как работает

Применение системы TN-C

Система TN-C широко применялась в распространенных ранее двухпроводных сетях, которые нередко встречаются и сегодня (в основном – в домах старой застройки). С точки зрения рядового пользователя она характеризуется тем, что в этом случае в розетках отсутствует специальный заземляющий контакт.

Система заземления TN-C

В сетях, сконструированных на основе этой схемы, нулевой провод заземляется только на станционной стороне (фото выше). Поэтому при его случайном обрыве или так называемом «отгорании» все подключенные к линии электроустановки и приборы оказываются совершенно незащищенными. Это вынуждает пользователей персонально заземлять каждую единицу эксплуатируемого в доме бытового прибора или устанавливать УЗО.

В современном строительстве эта системы уже много лет не используется; сегодня ей на смену пришла более эффективная TN-S.

Применение системы TN-S

Система TN-S более совершенна в смысле организации защиты, то есть имеет большую степень электрической безопасности. Это объясняется тем, что в ней имеется «самостоятельный» заземленный проводник, служащий исключительно для этих целей. Правда, за счет использования дополнительного медного материала стоимость системы существенно возросла. В случае трехфазного питания, например, от источника электроэнергии (трансформаторной подстанции) приходится прокладывать кабель, содержащий пять проводов. Это три обязательные фазы A, B и C, а также нейтраль и защитный проводник PE.

Система заземления TN-S

При реализации системы TN-C в электрических цепях организация повторного заземления нулевого провода также обязательна. Она производится методом соединения нейтрального проводника с земляной жилой защитного контура, обустраиваемого на стороне потребителя.

Система TN-C-S

Эта схема разработана с целью устранения недостатков системы TN-S и предусматривает использование в качестве общей шины совмещенного PEN-проводника, проложенного только до ввода на объект.

Эта система представляет собой нечто среднее между двумя уже рассмотренными вариантами защиты. Она не лишена тех же минусов, что и TN-S, так как в случае повреждения проводника PEN на линии от подстанции до объекта, все установленные в нем электроприборы окажутся под опасным напряжением. Для этого случая ПУЭ предписывают дополнительную защиту шины PEN от деформаций и механических повреждений.

Система заземления TN-C-S

В этой системе обустраиваемый контур заземления – это повторное соединение нулевого провода PEN с ЗУ перед вводом на конкретный объект. При случайном обрыве проводника на участке линии питания «трансформатор подстанции — здание» заземление осуществляется исключительно посредством PE провода.

Для этого на вводе в электроустановку напряжением до 1 кВ или в распределительном шкафу дома провод PEN обязательно «расщепляется» на две шины. Одна из них используется как рабочий нулевой проводник, а вторая – в качестве заземляющей жилы.

Рассмотренный подход к организации ПЗ позволяет исключить занос в силовые цепи дома наведенных токов через эффект, оказываемый э/м полями внешних коммуникаций. Вдобавок к этому оно снижает потенциал на корпусах оборудования и бытовых приборов при случайном обрыве N-проводника.

Из чего состоит заземление

  1. Внешний контур заземления. Располагается за пределами помещений, непосредственно в грунте. Представляет собой пространственную конструкцию из электродов (заземлителей), соединенных между собой неразделимым проводником.
  2. Внутренний контур заземления. Токопроводящая шина, размещенная внутри здания. Охватывает периметр каждого помещения. К этому устройству подсоединяются все электроустановки. Вместо внутреннего контура может быть установлен щиток заземления.
  3. Заземляющие проводники. Соединительные линии, предназначенные для подключения электроустановок непосредственно к заземлителю, или внутреннему контуру заземления.

Рассмотри эти компоненты подробнее.

Внешний, или наружный контур

Монтаж контура заземления зависит от внешних условий. Прежде чем начать расчет, и выполнить проектный чертеж, необходимо знать параметры грунта, в котором будут установлены заземлители. Если вы сами строили дом, эти характеристики известны. В противном случае лучше вызвать геодезистов, для получения заключения по грунту.

Какие бывают грунты, и как они влияют на качество заземления? Примерное удельное сопротивление каждого типа грунта. Чем оно ниже, тем лучше проводимость.

  • Глина пластичная, торф = 20–30 Ωм·м
  • Суглинок пластичный, зольные грунты, пепел, классическая садовая земля = 30–40 Ом·м
  • Чернозем, глинистые сланцы, полутвердая глина = 50–60 Ом·м

Это лучшая среда для того, чтобы установить наружный контур заземления. Сопротивление растекания тока будет достаточно низким даже при малом содержании влаги. А в этих грунтах естественная влажность обычно выше среднего.

Полутвердый суглинок, смесь глины и песка, влажная супесь — 100–150 Ом·м

Сопротивление немного выше, но при нормальной влажности параметры заземления не выйдут за нормативы. Если в регионе установки установится продолжительная сухая погода, необходимо принимать меры к принудительному увлажнению мест установки заземлителей.

Глинистый гравий, супесок, влажный (постоянно) песок = 300–500 Ом·м

Гравий, скала, сухой песок – даже при высокой общей влажности, заземление в такой почве будет неэффективным. Для соблюдения нормативов, придется устанавливать глубинные заземлители.

Многие владельцы объектов, экономя «на спичках», просто не понимают, для чего нужен контур заземления. Его задача при соединении фазы с землей обеспечить максимальную величину тока короткого замыкания. Только в этом случае быстро сработают устройства защитного отключения. Этого невозможно достичь, если сопротивление растекания тока будет высоким.

Определившись с грунтом, вы сможете выбрать тип, и самое главное — размер заземлителей. Предварительный расчет параметров можно выполнить по формуле:

Расчет приведен для вертикально установленных заземлителей.

Расшифровка величин формулы:

  • R0 — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • Рэкв — удельное сопротивление грунта, см. информацию выше.
  • L — общая длина каждого электрода в контуре.
  • d — диаметр электрода (если сечение круглое).
  • Т — вычисленное расстояние от центра электрода до поверхности земли.

Задавая известные данные, а также меняя соотношение величин, вы должны добиться значения для одного электрода порядка 30 Ом.

Если установка вертикальных заземлителей невозможна (по причине качества грунта), можно рассчитать величину сопротивления горизонтальных заземлителей.

Поэтому лучше потратить больше времени на забивание вертикальных стержней, чем следить за барометром и влажностью воздуха.

И все же приводим формулу расчета горизонтальных заземлителей.

Соответственно, расшифровка дополнительных величин:

  • Rв — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • b — ширина электрода — заземлителя.
  • ψ — коэффициент, зависящий от погодного сезона. Данные можно взять в таблице:

ɳГ — так называемый коэффициент спроса горизонтально расположенных электродов. Не вдаваясь в подробности, получаем цифры из таблицы на иллюстрации:

Предварительный расчет сопротивления необходим не только для правильного планирования закупок материала: хотя будет обидно, если вам не хватит для завершения работ, пары метров электрода, а до магазина несколько десятков километров. Более-менее аккуратно оформленный план, расчеты и чертежи, пригодятся для решения бюрократических вопросов: при подписании документов о приемке объекта, или составлении ТУ с компанией энергосбыта.

Разумеется, никакой инженер не подпишет бумаги только на основании пусть и красиво исполненных чертежей. Будут произведены замеры сопротивления растекания.

Далее расскажем о том, как добиться правильных характеристик внешнего контура заземления.

Земля для картошки и морковки

Одна из причин, по которой заземление — такая запутанная тема, может являться тот факт, что этим термином постоянно злоупотребляют. В зависимости от контекста оно может означать слегка разные, но связанные вещи. Это та причина, по которой некоторые инженеры не любят этот термин и используют сленговое слово из подзаголовка выше. Чтобы понять, что такое заземление, давайте вначале познакомимся с цепью возврата тока, а уже тогда затем мы легко разберемся и с заземлением.

Рисунок 1. Каждая рабочая электрическая цепь представляет собой замкнутый контур,
в котором обязательно должен быть обратный путь источнику тока

На рисунке 1 показана очень простая цепь. Как вы можете видеть: ток вытекает из батареи, течет через резистор, через светодиод, а затем втекает обратно в батарею. Чтобы любая электрическая цепь работала, она должна быть замкнутой, в ней обязательно должен быть обратный путь, по которому ток может вернуться к источнику. Вне зависимости от того, насколько сложной становится схема, на печатной плате для нее всегда есть или дорожка (дорожки) или слой, которые выступают в роли пути возврата тока назад к источнику.

Практически во всех электрических схемах эти цепи возврата имеют общее название «земля». Проблема здесь заключается в том, что термин «земля» также используется для указания базисной точки схемы. В большинстве случаев земля и базисная точка совпадают (см. рисунок 2) и все понятно, но бывает и по-другому (см. рисунок 3). Базисная точка нужна потому, что в цепи нет такого напряжения, которое было бы равно нулю абсолютно. Напряжение всегда измеряется относительно того или иного базисного узла схемы. Напряжение, то есть разность потенциалов в ветви цепи возврата тока, не обязательно должно быть равно нулю. На самом деле, с теоретической точки зрения, любой узел в цепи может выступать в качестве базисного. Тем не менее, по тем или иным причинам, о которых мы поговорим позже, одни узлы лучше подходят для этого, чем другие. Мы уверены, вы уже начали догадываться, как все усложняется – один и тот же термин используется для определения двух разных понятий.

Рисунок 2. Базисная точка и цепь возврата тока –

это один и тот же узел, очень естественно и типично

Рисунок 3. Базисная точка и цепь возврата тока не совпадают,
в сложных цепях это может превратиться в сущий кошмар

Сложные схемы могут содержать множество цепей возврата тока, и иногда некоторые из них могут подключаться РАЗНЫМ землям. Что это значит? Вам, наверное, интересно, как это может быть, ведь несколькими абзацами ранее мы говорили, что все цепи возврата тока в конце концов возвращают ток к источнику, и здесь, должно быть, есть какое-то противоречие. Взгляните на рисунок 4 – сейчас мы вместе разберемся в этом.

Рисунок 4. Различные участки схемы имеют разные земли,
но все они в конце концов ведут к источнику тока

На рисунке 4 вы можете видеть, по крайней мере, три различные земли: аналоговая земля (AGND), цифровая земля (DGND) и общая земля (GND) (Хотим сразу оговориться – схема, приведенная выше, собрана в системе проектирования и приведена с целью наглядной демонстрации различных цепей возврата тока. Эта схема в действительности не рабочая).

Обратите внимание — три различные земли служат для возврата тока к источнику, в реальной цепи это допустимо. Тем не менее, зачем мы разделили землю, если в конце концов они все ведут к одному источнику? Быстрый ответ – во время проектирования печатной платы, сгруппировав цепи возврата тока и снабдив каждую группу своей землей, мы можем изолировать помехи от токов одних цепей от других

Например, токи в цепи, подключенной к земле AGND, протекают только через компоненты, подключенные к этой земле. В схемах такой конструкции токи разных цепей взаимодействуют друг с другом только у источника. Используя наши предыдущие определения, мы можем видеть, что все цепи возврата ведут к источнику, просто их расположение было тщательно спроектировано для того, чтобы обеспечить некую помехоустойчивость между тремя цепями.

Земля, шасси и сигнальное заземление — одни и те же яйца, только в профиль

Вооружившись новыми определениями, давайте проанализируем наиболее часто используемые «земли» и тогда мы поймем, что все они работают примерно одинаково, но в зависимости от конкретного применения их называют по-разному.

Нормы и требования

Сопротивление PE-контура нормируется. Максимально допустимые значения задают ПУЭ и другие документы. Данные сведены в таблицу:

Устройство Максимально допустимое сопротивление заземления, Ом
Молниеотвод 10-20
Телекоммуникационные системы 2
Серверное оборудование 1
Рабочее заземление электроустановок 4-10
Защитное заземление жилых и общественных зданий при суммарной мощности одновременно работающих потребителей до 100 кВА 10
То же при мощности свыше 100 кВА 4

В качестве электродов разрешено применять:

  • трубы диаметром 3-5 см с толщиной стенки от 3,5 мм;
  • полосовую сталь или уголок толщиной от 4 мм;
  • прут диаметром от 10 мм.

В агрессивных почвах (кислых, щелочных и т.д.) вместо быстро корродирующей стали применяют медные, омедненные или оцинкованные стержни. Алюминий использовать нельзя: он покрывается плохо проводящей электричество окисной пленкой.

Число стержней и глубина погружения не нормируются – их определяют расчетом. Но в правилах прописано ограничение: электроды забивают хотя бы на 30 см ниже отметки промерзания грунта. Причина заключается в том, что мерзлая почва обладает высоким сопротивлением растеканию тока.

Со временем резистивность PE-контура может вырасти по ряду причин:

  • из-за коррозии стержней;
  • вследствие изменения химического состава грунта;
  • в результате снижения влажности почвы после работ по осушению участка.

По этой причине ПУЭ и Правила технической эксплуатации электроприемников предписывают периодически замерять сопротивление заземлителя. Установлены следующие сроки:

Потребители Периодичность проверок
Работающие в особо опасных условиях – лифты, прачечные, бани, кухни и столовые, грузоподъемные машины и механизмы 1 год
Силовые подстанции 6 лет
Частные дома 1 год
То же, если электроустановки, дымовые трубы или изоляция проводов уже подвергались ремонту 6 месяцев

Замер сопротивления осуществляет лицензированная компания. Результаты отражают в протоколе, который домовладелец должен предъявить в РЭС.

Рабочее заземление

В отличие от защитного заземления, используемого исключительно в целях безопасности людей, рабочее заземление предназначается для того, чтобы гарантировать нормальную работу электрических приборов и устройств.

Реализуется функциональное заземление самым непосредственным образом – через подсоединение металлических токопроводящих частей к так называемому «заземлителю». В качестве этой разновидности ЗУ допускается использовать подключенные к заземляющей конструкции молниеотводы, защищающие предприятия и другие объекты от грозы. Эти же устройства помогают уберечь действующее оборудование от наведенных (или индуцированных) ЭДС, представляющих ничуть не меньшую угрозу для него.

В ряде случаев функциональное заземление организуется для того, чтобы создать условия для срабатывания специальных приспособлений пробивного типа (предохранителей, резисторов и подобных им).

Хорошо усвоив, что называют рабочими заземлениями, пользователь сможет понять не только их отличие от защитного, но и то, что эффективность его действия зависит от параметров конструкции ЗУ. Под ним в первую очередь понимается сопротивление цепи стекания тока в землю, величина которого согласно требованиям ПУЭ не должна превышать нормируемого значения (25-30 Ом).

Техника монтажных работ

Грамотный подход к обустройству ЗК состоит в правильности выбора места под него, а также в соблюдении требований действующих нормативов в части проведения основных монтажных работ.

Выбор места под ЗК

Перед устройством контура заземления важно подобрать место для размещения его элементов. Желательно – неподалеку от дома (его обычно рассчитывают устанавливать на удаление не более 2-х метров, что позволит выиграть на длине проводников)

Дополнительная информация: При выборе участка под заземление в первую очередь следует учесть, чтобы эта площадка располагалась на контролируемой хозяином территории.

Для этих целей подойдут такие зоны, как:

  • участок огорода (кроме грядок с картофелем);
  • палисадник или клумба;
  • парковая зона, непосредственно примыкающая к дому.

Если грунт на прилегающей к строению местности имеет высокое удельное сопротивление – допускается установка системы штырей КЗ на более удаленной дистанции.

В любом из рассмотренных случаев при выборе места под ЗК следует предусмотреть все возможные варианты его использования в будущем (пусть даже и в очень отдаленной перспективе). Это позволит избежать ненужных издержек на перенос конструкции в ситуации, когда в данной зоне потребуется разбить детскую площадку, например.

Монтаж контура заземления

В зависимости от выбранной площадки (ее формы и размеров) при монтаже ЗК могут применяться различные схемы. Штыри в нем могут располагаться как в линию, так и в виде треугольника.

В том случае, когда выбрана треугольная конструкция, порядок обустройства ЗК выглядит следующим образом:

  1. Сначала на этом месте размечается площадка соответствующей конфигурации со сторонами примерно 2,5-3 метра.
  2. Затем вырывается котлован с размерами чуть большими, чем это обозначено разметкой.
  3. Вырытый в земле приямок должен повторять форму равнобедренного треугольника и иметь глубину не менее полуметра (при ширине порядка 50-70 см.).
  4. После этого по углам треугольного котлована с небольшим отступлением от стенок вбиваются три стальных штыря (отрезка арматуры) на глубину не менее 2-х метров.
  5. И, в завершении все они соединятся между собой стальными полосами (делается это посредством сварки, которой в данной ситуации следует отдать предпочтение).

В результате должна получиться конструкция, похожая на приведенную ниже.

Контур заземления по схеме треугольник

Сечения проводов заземления от контура не должно быть менее 12-16 мм квадратных.

Для экономии сил и времени вырывать приямок под штыри можно не полностью. Достаточно будет выбрать землю только из канавок, в которые укладываются затем стальные соединительные полосы. На заключительной стадии сварных работ уже готовый заземлитель присыпается составом с низким удельным сопротивлением (золой или пеплом, например). Со временем содержащиеся в добавках соли растворятся в земле, что обеспечивает снижение сопротивления растеканию аварийного тока.

Параметры заземлителей (вертикальное расположение)

При проведении расчетов контуров заземления вертикального типа необходимо руководствоваться следующей формулой:

Приведенные в ней величины расшифровываются, как указано ниже:

R0 – величина расчетного сопротивления одиночного электрода в Омах.

Рэкв – значение удельного сопротивления почвы, уже рассмотренное ранее в главе о наружном ЗК.

L – длина отдельного электрода, входящего в состав системы заземления.

D – диаметр или соответствующий сечению размер штыря.

Т – расчетное расстояние от условного центра каждого из электродов до земной поверхности.

Для того чтобы получить требуемое значение сопротивления R0 (согласно ПУЭ оно не должно превышать 30 Ом) следует подбирать входящие в формулу переменные величины.

Перед тем как рассчитать ЗК следует учитывать, что для монтажа горизонтальной конструкции потребуется намного больше усилий и затрат по времени (а также значительных расходов медного материала). Кроме того, обустроенное таким способом заземление очень чувствительно к погодным условиям.

Именно поэтому считается, что лучше потратиться на обустройство вертикальных стержней, чем пытаться преодолеть недостатки горизонтальных заземляющих систем.

Удельное сопротивление грунта и расчёт электродов

Передача электрического потенциала литосфере происходит со всей поверхности металлических электродов через металлизированные частицы почвы и содержащуюся в грунте влагу. Учитываться должно всё: от шероховатости поверхности металла до пористости грунта и плотности посадки в нём стальных заземлителей.

Геоморфологический профиль и таблица удельных сопротивлений грунтов — вот что берётся за основу расчёта сопротивления распространению тока через основные заземлители. Рекомендуется пользоваться пособием «Нормы устройства сетей заземления» за авторством Р.Н. Карякина, где есть исчерпывающая информация для вычисления нужных параметров, а также описана техника использования естественных заземлителей (обсадок скважин, свай или трубопроводов).

В реальности подробный расчёт выполняется редко, обычно исходные данные принимаются худшими из возможных для конкретных условий размещения. Требуемые характеристики достигаются увеличением либо длины электродов (что более предпочтительно), либо их числа. Запасом прочности обеспечивается длительный срок эксплуатации контура: покрываясь ржавчиной, электроды сильно теряют в проводимости, поэтому к ним периодически добивают новые.

Второй вопрос — общая площадь поверхности. В качестве основных заземлителей следует использовать угловую сталь, тавр или двутавр — изделия с сечением незамкнутой формы, контактирующие с грунтом всеми сторонами. Сопротивление одиночного заземлителя или его участка определяется как удельное сопротивление грунта, его окружающего, делённое на π — кратное значение основного линейного размера (для вертикально стержня это его длина).

Результат нужно умножить на безразмерный коэффициент формы (для вертикального стержня это половина натурального логарифма от четырёхкратной длины, поделённая на периметр сечения). Для примера, вертикальный электрод длиной 2,5 метра из угловой стали 50х50 мм коэффициент составит почти 1,25, сопротивление растеканию (при залегании заземлителей целиком в суглинке) составит 8,3 Ом.

Общее сопротивление вертикальных заземлителей описывается как сумма их обратных значений:

1 / R = 1 / R1 + 1 / R2 + … + 1 / Rn

Таким образом, для достижения нормативного значения в 4–6 Ом потребуется не менее двух электродов по 2,5 метра, по аналогии можно рассчитать варианты с другим подходящим числом или длиной заземлителей.

Готовые комплекты заземления для частного дома

Самостоятельный монтаж позволяет существенно снизить затраты на систему заземления. Однако готовые комплекты позволяют ускорить работы и повысить надежность контура. Можно выделить такие модели:

  1. ZandZ – контур с одним или несколькими электродами из нержавеющей стали. Допускаемое заглубление — до 10 м. Цена зависит от длины штырей. Средняя цена комплекта с пятиметровыми электродами — 23500 рублей.
  2. Galmar – имеет электроды длиной до 30 м. Средняя цена — 41000 рублей.
  3. Elmast. Эта система изготавливается в России и адаптирована к российским условиям эксплуатации. Цена – от 8000 рублей.

Защита передвижных установок

Все, что было рассмотрено ранее, традиционно относится к обычному стационарному оборудованию. Иной подход наблюдается при необходимости заземления передвижных электроустановок, для которых выполнение требований по переходному сопротивлению несколько затруднено. В связи с этим ПУЭ допускают повышение его величины до предельного значения, равного 25-ти Омам.

Последнее требование справедливо лишь для установок с автономным питанием, имеющим изолированную от земли нейтраль (в качестве примера может быть приведено ГРПШ).

Этот вид заземляющих устройств традиционно применяется для тех образцов оборудования, которые не являются источниками питания для остальных установок и не склонны к искрообразованию. Другая область их применения – передвижные агрегаты, оснащенные собственными стационарными заземлителями, не используемыми в данный момент. Передвижные установки с автономным питанием из-за возможного образования трущихся сочленений и изолированной от земли нейтрали подлежат регулярному освидетельствованию в части состояния защитной оболочки (изоляционного покрытия).

Отличия между традиционным и штыревым заземлением

Традиционный контур заземления, который обычно монтируют самостоятельно, представляет из себя весьма громоздкую и трудоемкую подземную конструкцию.

Забивается несколько вертикальных электродов (уголок, труба, прут), между ними прокапывается траншея, и все они соединяются между собой горизонтальными связями (шиной или прутком).

Расстояние между вертикальными электродами должно быть не меньше их длины. Чем же плох такой способ?

Во-первых, мало кому охота перекапывать свой участок метровыми траншеями, а если территория оказалась уже облагорожена, то вообще возникает тупиковая ситуация. Кроме того, все эти ржавые металлические уголки, трубы и шины, находясь в земле, через несколько лет эксплуатации (буквально за 5-7 лет) начинают усиленно разрушаться.

Поэтому на сегодняшний день большую популярность получила другая система заземления, а именно — модульно штыревая или глубинная. Наиболее известные фирмы производители в наших краях Galmar и ZandZ.

Как известно, сопротивление заземляющего устройства зависит от:

типа грунта

времени года

глубины залегания электродов

Таким образом, если один электрод путем постепенного наращивания, забить на максимально возможную глубину, то можно получить идеальные показатели сопротивления. На этом принципе и работает глубинное заземление.

намного долговечнее

на порядок проще в монтаже

и при этом стоит уже не так дорого (можно найти комплекты порядка 5000 рублей)

Плюс ко всему этому, весь монтаж обходится без сварочных работ.

Именно необходимость сварки многих останавливает от самостоятельного выполнения данной работы. Либо нет аппарата, либо нет необходимых навыков.

Вот и приходится нанимать сторонних электриков.

Все заземление занимает место на территории вашего дома, буквально несколько квадратных сантиметров.

А еще его без проблем можно сделать прямо в подвале здания.

В среднем выходит, что в частном доме без котла для достижения требуемых 30 Ом, придется забить электрод общей длиной на 6-9 метров. Для дома с газовым отоплением (R=10 Ом) – на 9-15 метров.

Это усредненные показатели. Более точные данные всегда индивидуальны и напрямую зависят от региона, где вы проживаете, качества и состава грунта.

Если ваш дом построен на песке, однозначно покупайте 15-ти метровый комплект. Даже без наличия газового котла.

Расстояние трассы заземлителя от стены также регламентируется. В отличие от вводного кабеля оно должно быть не менее 1 метра.

Для подземного кабельного ввода этот показатель – 0,6м. Почему так, подробно читайте об этих и других требованиях в отдельной статье.

Как сделать заземление своими руками

Прежде чем самостоятельно обустроить заземление своего загородного дома, рекомендуется изучить пошаговую инструкцию, как правильно сделать и установить конструкцию.

Выбор места установки контуров

В первую очередь на участке подбирают безопасное для жителей коттеджа место размещения контура заземления. При пробое электрической проводки срабатывает защита, и весь ток уходит на закопанные в землю электроды. В этот момент здесь находиться очень опасно.

Поэтому участок закладки системы подбирают там, где никто не ходит. Лучше сделать отвод за зданием возле забора, но расстояние от заземлителя до фундамента дома не должно превышать 1 м. Опасную зону дополнительно рекомендуется загородить небольшим деревянным заборчиком.

Начальные земляные работы

На выбранном участке размечают треугольник с равными сторонами по 3 м и снимают грунт на глубину 0,5 м. Ширина равна размеру штыковой лопаты. Это делается для облегчения сваривания металлической полоски со штырями.

От треугольника выкапывают траншею аналогичного заглубления до фундаментного основания жилого здания. В нее закладывают вывод для тока, который соединяет электрощит с заземляющим контуром.

Установка заземлителей

В готовую траншею закладывают заземляющую конструкцию. Для этого концы штырей предварительно затачивают болгаркой, затем забивают их в грунт на глубину 3 м по концам треугольника. Их верхние окончания должны располагаться на плоскости ямы.

Сварка

К выступающим концам забитых в землю электродов приваривают полоски из металла толщиной 4 мм и шириной 40 мм. В результате получается стальной треугольник, к которому приваривают длинную стальную полосу, пролегающую до фундамента жилого дома. Здесь осуществляют подключение заземляющей конструкции к проводникам, выходящим на щиток. Для этого к концу полоски на расстоянии 0,3-1 м от поверхности земли приваривают болт М8 (М10).

Обратная засыпка

После завершения сварочных работ траншею засыпают грунтом и тщательно утрамбовывают. Но предварительно на дно ямы заливают соляной раствор. Для его приготовления используют ведро воды и 2-3 пачки соли.

Проверка сопротивления

При самостоятельном обустройстве заземления многие владельцы загородных коттеджей интересуются, нужно ли покупать для проверки сопротивления системы специальный прибор. Такое устройство заводского изготовления стоит дорого. Если в дальнейшем его использование не планируется, рекомендуется сделать похожее приспособление своими руками с помощью обычной лампочки на 100 Вт и проводов.

Чтобы проверить, работает система или нет, самодельное устройство одним контактом подключают к фазе, другим – к контуру заземления. Если лампа горит ярко, значит, все монтажные работы сделаны правильно. Тусклый свет говорит о том, что между элементами конструкции слабый контакт.

Если лампочка не загорелась, значит, при сборке были допущены ошибки либо неправильно разработана схема.

Выбор места для размещения контура

Чтобы определить место, подходящее для забивки электродов заземления, нужно пройти процедуру, именуемую согласованием трасс инженерных коммуникаций. Поскольку длина электродов, как правило, больше глубины залегания линий электропередач, связи и трубопроводов, риск их повреждения абсолютно реален при работе в черте города. Поэтому сначала ознакомьтесь с планами прокладки трасс коммуникаций, запрос можно оставить в местной городской администрации.

Это может быть связано с небольшими денежными издержками, однако получать ордер на земляные работы почти никогда не требуется. С согласованием связан один интересный момент: вы снимаете с себя ответственность за повреждение линии, если её нет в реестре подземных коммуникаций. При этом даже если в идеально подходящем месте уже проложены подземные трассы, вы сможете легко их обойти, пользуясь указанными значениями защитных зон и точками привязки.

Ещё один критерий оценки местности — отношение уровня грунтовых вод к глубине погружения основных заземлителей. Если есть возможность устроить контур на дне подвала или смотровой ямы — лучше ей воспользоваться. Исключение составляют участки, насыщенные агрессивными жидкостями: септики, сливные и компостные ямы. Также следует избегать близости с деревьями, активно поглощающими воду, например, берёзой или ивой.

Расчет заземления для частного дома: формулы и примеры

Правила устройства электроустановок (ПУЭ) и ГОСТ устанавливают точные рамки, сколько Ом должно быть заземление. Для 220 В – это 8 Ом, для 380 – 4 Ом. Но не стоит забывать, что для общего результата учитывается и сопротивление грунта, в котором устраивается заземляющий контур. Эти сведения можно узнать из таблицы.

Вид грунта Максимальное сопротивление, Ом Минимальное сопротивление, Ом
Глинозем 65 55
Гумус 55 45
Лёсовые отложения 25 15
Песчаник, залегание грунтовой воды глубже 5 м 1000  –
Песчаник, грунтовые воды не глубже 5 м 500  –
Песчано-глинистая почва 160 140
Суглинок 65 55
Торфяник 25 15
Чернозём 55 45

Зная данные можно использовать формулу:

Формула расчета сопротивления стержня

где:

  • Ro – сопротивление стержня, Ом;
  • L – длина электрода, м;
  • d – диаметр электрода, м;
  • T – расстояние от середины электрода до поверхности, м;
  • Рэкв – сопротивление грунта, Ом;
  • Т – расстояние от верха стержня до поверхности, м;
  • ln – расстояние между штырями, м.

Но пользоваться такой формулой сложно. Для простоты предлагаем воспользоваться онлайн-калькулятором, в который нужно только внести данные в соответствующие поля и нажать кнопку рассчитать. Это исключит возможность ошибки в вычислениях.

Для расчета количества штырей воспользуемся формулой

Формула расчета количества стержней в контуре

где Rn – нормируемое сопротивление для заземляющего устройства, а ψ – климатический коэффициент сопротивления грунта. В России за него принимают 1.7.

Рассмотрим пример заземления для частного дома, стоящего на черноземе. Если контур выполняется из стальной трубы, длиной 160 см и диаметром – 32 см. Подставив данные в формулу получим no = 25.63 х 1.7/4 = 10.89. Округлив результат в большую сторону, получается нужное количество заземлителей – 11.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector