Расчет отопления дома. онлайн калькулятор теплопотерь и мощности котла
Содержание:
Мощность генератора тепла
Одним из основных узлов отопительной системы является котел: электрический, газовый, комбинированный – на данном этапе не имеет значения. Поскольку нам важна главная его характеристика – мощность, то есть количество энергии за единицу времени, которая будет уходить на отопление.
Мощность самого котла определяется по ниже приведённой формуле:
Wкотла = (Sпомещ*Wудел) / 10,
где:
- Sпомещ – сумма площадей всех комнат, которые требую отопления;
- Wудел – удельная мощность с учётом климатических условий местоположения (вот для чего нужно было знать климат региона).
Что характерно, для разных климатических зон имеем следующие данные:
- северные области – 1,5 – 2 кВт/м2;
- центральная зона – 1 – 1,5 кВт/м2;
- южные регионы – 0,6 – 1 кВт/м2.
Эти цифры достаточно условны, но тем не менее дают явный численный ответ относительно влияния окружающей среды на систему отопления квартиры.
На данной карте представлены климатические зоны с разными температурными режимами. От расположения жилья относительно зоны и зависит сколько нужно тратить на обогрев метра квадратного кВатт энергии (+)
Сумма площади квартиры которую необходимо отапливать – равна общей площади квартиры и равна, то есть – 65,54-1,80-6,03=57,71 м2 (минус балкон). Удельная мощность котла для центрального региона с холодной зимой – 1,4 кВт/м2. Таким образом, в нашем примере расчётная мощность котла отопления эквивалентна 8,08 кВт.
Радиаторы отопления.
Обычно выбор, казалось бы, простых составляющих на практике вызывает множество самых противоречивых мнений. Бесспорно одно: их стоит выбирать не только по эстетическим свойствам, а исходя из технических параметров. Последние немало определяются материалом, из которого радиатор изготовлен:
1. Стальные. Такие радиаторы недороги, но очень сильно подвержены коррозии. Абсолютно не рекомендуется использовать стальные радиаторы там, где воду летом сливают — срок службы значительно сокращается.
2. Алюминиевые. Они более устойчивы к коррозии, быстро нагреваются и достаточно привлекательны на вид. Для них недопустимы перепады давления, чего в частных домах практически и не бывает.
3. Биметаллические. Здесь соединяются лучшие свойства алюминия и стали, что увеличило теплоотдачу, но остались те же антикоррозийные свойства.
4. Чугунные. Это практически вечные радиаторы. Они медленно нагреваются, но и остывают крайне медленно. По внешнему виду значительно уступают описанным выше типам радиаторов и недешевы. Также во время монтажа значительно может помешать большой вес, но в процессе эксплуатации это никак не мешает.
Расчет отопительной системы
При планировании отопительной системы для частного дома наиболее сложным и ответственным этапом является проведение гидравлических расчетов – нужно определить сопротивление системы отопления.
Ведь, берясь самостоятельно как рассчитать объем системы отопления, так и далее планировать систему, мало кто знает, что предварительно необходимо произвести некоторые графически-проектные работы. В частности, следует определить и отобразить на плане отопительной системы такие параметры:
тепловой баланс помещений, в которых будут расположены отопительные приборы; тип наиболее подходящих отопительных приборов и теплообменных поверхностей, указать их на предварительном плане отопительной системы; наиболее подходящий тип отопительной системы, подобрать наиболее подходящую конфигурацию. Также следует создать подробную схему расположения нагревательного котла, трубопровода. выбрать тип трубопровода, определить необходимые для качественной работы дополнительные элементы (вентили, клапаны, датчики). Указать на предварительной схеме системы их расположение. создать полную аксонометричную схему. В ней следует указать номера участков, их продолжительность и уровень тепловой нагрузки. спланировать и отобразить на схеме основной отопительный контур
При этом важно учесть максимальный расход теплоносителя. Принципиальная схема отопления
Принципиальная схема отопления
Двухтрубная отопительная система
Для любой отопительной системы расчетным участком трубопровода является тот сегмент, диаметр на котором не изменяется и где происходит стабильный расход теплоносителя. Последний параметр вычисляется из теплового баланса помещения.
Для расчета двухтрубной системы отопления следует провести предварительную нумерацию участков. Начинается она с нагревательного элемента (котла). Все узловые точки подающей магистрали, в которых происходит разветвление системы, необходимо отмечать заглавными буквами.
Двухтрубная отопительная система
Соответственные узлы, расположенные на сборных магистральных трубопроводах, следует обозначать черточками. Места ответвления приборных веток (на узловом стояке) чаще всего обозначаются арабскими цифрами. Эти обозначения соответствуют номеру этажа (в случае, если внедрена горизонтальная отопительная система) или номеру стояка (вертикальная система). При этом в месте соединения потока теплоносителя данный номер обозначается дополнительным штрихом.
Для максимально качественного выполнения работы следует нумеровать каждый участок
При этом важно учитывать, что номер должен состоять из двух значений – начала и конца участка
Простейшие приемы расчета
Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.
Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.
Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:
оптимальная | допустимая | оптимальная | допустимая, max | оптимальная, max | допустимая, max | |
Для холодного времени года | ||||||
Жилая комната | 20÷22 | 18÷24 (20÷24) | 45÷30 | 60 | 0.15 | 0.2 |
То же, но для жилых комнат в регионах с минимальными температурами от — 31 °С и ниже | 21÷23 | 20÷24 (22÷24) | 45÷30 | 60 | 0.15 | 0.2 |
Кухня | 19÷21 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Туалет | 19÷21 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Ванная, совмещенный санузел | 24÷26 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Помещения для отдыха и учебных занятий | 20÷22 | 18÷24 | 45÷30 | 60 | 0.15 | 0.2 |
Межквартирный коридор | 18÷20 | 16÷22 | 45÷30 | 60 | Н/Н | Н/Н |
Вестибюль, лестничная клетка | 16÷18 | 14÷20 | Н/Н | Н/Н | Н/Н | Н/Н |
Кладовые | 16÷18 | 12÷22 | Н/Н | Н/Н | Н/Н | Н/Н |
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется) | ||||||
Жилая комната | 22÷25 | 20÷28 | 60÷30 | 65 | 0.2 | 0.3 |
Второе – компенсирование потерь тепла через элементы конструкции здания.
Самый главный «противник» системы отопления — это теплопотери через строительные конструкции
Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями | от 5 до 10% |
«Мостики холода» через плохо изолированные стыки строительных конструкций | от 5 до 10% |
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) | до 5% |
Внешние стены, в зависимости от степени утепленности | от 20 до 30% |
Некачественные окна и внешние двери | порядка 20÷25%, из них около 10% — через негерметизированные стыки между коробками и стеной, и за счет проветривания |
Крыша | до 20% |
Вентиляция и дымоход | до 25 ÷30% |
Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.
Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.
Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:
Самый примитивный способ подсчета — соотношение 100 Вт/м²
Q = S × 100
Q – необходимая тепловая мощность для помещения;
S – площадь помещения (м²);
100 — удельная мощность на единицу площади (Вт/м²).
Например, комната 3.2 × 5,5 м
S = 3,2 × 5,5 = 17,6 м²
Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт
Расчет тепловой мощности от объема помещения
Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.
Q = S × h × 41 (или 34)
h – высота потолков (м);
41 или 34 – удельная мощность на единицу объема (Вт/м³).
Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:
Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт
Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.
Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.
Как рассчитать количество секций радиатора отопления
Чтобы теплоотдача и нагревательная эффективность была должного уровня, при расчете размера радиаторов нужно учесть нормативы их установки, а отнюдь не опираться на размеры оконных проемов, под которыми они устанавливаются.
На теплоотдачу влияет не ее размер, а мощность каждой отдельной секции, которые собраны в один радиатор. Поэтому лучшим вариантом будет разместить несколько небольших батарей, распределив их по комнате, нежели одну большую. Это можно объяснить тем, что тепло будет поступать в помещение из разных точек и равномерно прогревать его.
Каждое отдельное помещение имеет свою площадь и объем, от этих параметров и будет зависеть расчет количества секций, устанавливаемых в нем.
Расчет на основании площади помещения
Чтобы правильно рассчитать это количество на определенную комнату, нужно знать некоторые правила:
Узнать нужную мощность для обогрева помещения можно, умножив на 100 Вт размер его площади (в квадратных метрах), при этом:
- На 20% увеличивают мощность радиатора в том случае, если две стены помещения выходят на улицу, и в нем находится одно окно — это может быть торцевая комната.
- На 30% придется увеличить мощность, если комната имеет те же характеристики, как в предыдущем случае, но в ней устроено два окна.
- Если же окно или окна комнаты выходят на северо-восток или север, а значит, в ней бывает минимальное количество солнечного света, мощность нужно увеличить еще на 10%.
- Устанавливаемый радиатор в нишу под окном, имеет сниженную теплоотдачу, в этом случае придется увеличить мощность еще на 5%.
Ниша снизит энергоотдачу радиатора на 5 %
Если радиатор закрывается экраном в эстетических целях, то снижается теплоотдача на 15%, и ее также нужно восполнить, увеличив мощность на эту величину.
Экраны на радиаторах — это красиво, но они заберут до 15% мощности
Удельная мощность секции радиатора обязательно указывается в паспорте, который производитель прилагает к изделию.
Зная эти требования, можно рассчитать необходимое количество секций, разделив полученное суммарное значение требуемой тепловой мощности с учетом всех указанных компенсирующих поправок, на удельную теплоотдачу одной секции батареи.
Полученный результат расчетов округляется до целого числа, но только в большую сторону. Допустим, получилось восемь секций. И тут, возвращаясь к вышесказанному, нужно отметить, что для лучшего обогрева и распределения тепла, радиатор можно разделить на две части, по четыре секции каждая, которые устанавливают в разных местах помещения.
Каждое помещение просчитывается отдельно
Нужно отметить, что такие расчеты подходят для определения количества секций для помещений, оснащенных центральным отоплением, теплоноситель в котором имеет температуру не больше 70 градусов.
Этот расчет считается достаточно точным, но можно произвести расчет и по-другому.
Расчет количества секций в радиаторах, исходя из объема помещения
Стандартом считается соотношение тепловой мощности в 41 Вт на 1 куб. метр объема помещения, при условии нахождения в нем одной двери, окна и внешней стены.
Чтобы результат был виден наглядно, для примера можно рассчитать нужное количество батарей для комнаты площадью 16 кв. м.и потолком, высотой 2,5 метра:
16 × 2,5= 40 куб.м.
Далее нужно найти значение тепловой мощности, это делается следующим образом
41 × 40=1640 Вт.
Зная теплоотдачу одной секции (ее указывают в паспорте), можно без труда определить количество батарей. Например, теплоотдача равна 170 Вт, и идет следующий расчет:
1640 / 170 = 9,6.
После округления получается цифра 10 — это и будет нужное количество секций отопительных элементов на комнату.
Существуют также некоторые особенности:
- Если комната соединяется с соседним помещением проемом, не имеющим двери, то необходимо считать общую площадь двух комнат, только тогда будет выявлена точное количество батарей для эффективности отопления.
- Если теплоноситель имеет температуру ниже 70 градусов, количество секций в батареи придется пропорционально увеличить.
- При установленных в комнате стеклопакетах, значительно снижаются тепловые потери, поэтому и количество секций в каждом радиаторе может быть меньше.
- Если в помещениях установлены старые чугунные батареи, которые вполне справлялись с созданием нужного микроклимата, но есть планы поменять их на какие-то современные, то посчитать, сколько их понадобится, будет очень просто.Одна чугунная секция имеет постоянную теплоотдачу в 150 Вт. Поэтому количество установленных чугунных секций нужно умножить на 150, а полученное число делится на теплоотдачу, указанную на секции новых батарей.
Модели радиаторов: на что обратить внимание
Комфортная температура в помещении зависит не только от того, насколько грамотно произведён расчет отопительных приборов системы отопления, но и насколько верно подобран тип батарей по материалу и конструкции.
Наиболее распространены в квартирах и домах следующие типы радиаторов:
- вакуумные;
- стальные;
- алюминиевые;
- анодированные алюминиевые
- биметаллические;
- чугунные;
- медные.
Они имеют различные эксплуатационные характеристики, которые нужно иметь в виду, когда решается задача, как рассчитать монтаж отопления.
- Вакуумные — последнее изобретение в сфере теплотехники. Позволяют сэкономить количество теплоносителя до 80 процентов. В корпус залита литиево-бромидная жидкость. Экономичные, компактные и универсальные. Отличает высокая теплоотдача, устойчивость к коррозии, возможность монтажа в системах, где применяются любые виды топлива в качестве источника тепла.
- Стальные радиаторы могут быть различными по форме и конструкции. Принципиально различаются между собой панельные и трубчатые. Панельные радиаторы последнего поколения сильно отличаются от своих предшественников, которыми в советское время пытались заменить тяжёлые чугунные батареи. У потребителей есть возможность выбора устройств с учётом количества панелей и теплообменников, с нижним или боковым подключением. Имеют свои особенности и трубчатые радиаторы. При всех плюсах стальных моделей, у них есть существенные минусы — подвержены коррозии, плохо переносят перепады давления теплоносителя, есть вероятность разрыва сварочных швов. Поэтому в домах или квартирах, где невозможно проконтролировать качество и давление теплоносителя, их ставить рискованно.
- Алюминиевые радиаторы «солидарны» со стальными в этом плане. Их лучше использовать в частных домах или в квартирах, где установлено автономное отопление, выдержаны требования к теплоносителю, нет риска в отношении гидроударов. Привлекают хорошие эксплуатационные показатели, доступная цена, лёгкость при монтаже и аккуратный внешний вид.
- Алюминиевые анодные радиаторы являются практически универсальными в плане выбора теплоносителя, так как в процессе производства секции подвергают процессу анодного оксидирования. Внутренние поверхности стенок идеально гладкие. Внешний вид ничем не отличается от алюминиевых, а вот цена гораздо выше. Поэтому желательно делать покупки в торговых точках, которые дорожат своей репутацией и могут предоставить сертификат на товар.
- Биметаллические радиаторы ещё более надёжные. Конструкция у них следующая: каналы, по которым циркулирует теплоноситель, выполнены из нержавеющей стали, а внешняя оболочка из алюминия. Таким образом сохранены все достоинства алюминиевых радиаторов и полностью исключен их главный недостаток: к качеству теплоносителя такие батареи не имеют особых требований. Кроме того, они высокой прочности и хорошо держат гидроудары.
- Чугунные по-прежнему в числе лидеров по надёжности и долговечности. Минус — тепловая инерционность, в некоторых случаях, идёт за преимущество. Например, в отопительных системах, которые работают на твёрдом топливе. Чугунные батареи медленно разогреваются, зато долго держат тепло, медленно остывают.
- Теплопроводность медных радиаторов в 5 раз выше, чем у чугунных. Они устойчивы к агрессивной среде, не боятся температуры в 150 градусов выше нуля, стойко держат перепады давления в 16 атмосфер. Теплоноситель по внутренним поверхностям скользит без задержек. Редко кому не нравится их внешний вид — они великолепно выглядят без покраски. Единственный минус — высокая цена.
2 Газовые и твердотопливные установки
Расчёт теплопотерь производится по разным формулам. Для использования некоторых из них требуется знать мощность обогревательных устройств. Поэтому перед тем как рассчитать отопление, нужно определиться, какой котёл будет выполнять функцию обогревателя в доме. Он может функционировать за счёт:
- электроэнергии;
- жидкого топлива;
- твёрдого топлива;
- газа.
Среди всех видов топлива для частных домов газ пользуется наибольшей популярностью. Современные отопительные газовые установки характеризуются высоким коэффициентом полезного действия. Однако их использование экономически оправдано только в тех случаях, когда имеется возможность подключения индивидуальной системы отопления к газовому трубопроводу. Если такой возможности нет, придётся использовать баллоны с газом, нуждающиеся в постоянной дозаправке, или выбирать другой способ обогрева.
Сейчас получают распространение отопительные полуавтоматические приборы, работающие на твёрдом топливе. Для них могут использоваться:
- дрова (пиленные или колотые);
- брикеты из отходов деревообработки (стружки, щепки, опилки);
- гранулы и пеллеты (из картона, коры, торфа, соломы и другого);
- уголь.
Современные твердотопливные котлы имеют эстетичный вид, непохожи на старинные русские печи, не занимают много места. Однако их существенный недостаток заключается в необходимости регулярной загрузки топлива (не реже одного раза в сутки). Чтобы решить эту проблему, производители котлов начали выпускать полностью автоматизированные модели. Но стоят они достаточно дорого.
Монтаж системы
Первым делом нам требуется установить секционные радиаторы. Их надо размещать строго под окнами, тёплый воздух от радиатора будет препятствовать проникновению холодного воздуха из окна. Для монтажа секционных радиаторов не понадобится никакого специального оборудования, лишь перфоратор и строительный уровень. Необходимо строго придерживаться одного правила: все радиаторы в доме должны быть смонтированы строго на одном горизонтальном уровне, от этого параметра зависит общая циркуляция воды в системе. Также соблюдайте вертикальное расположение рёбер радиатора.
После монтажа радиаторов можно приступать к прокладке труб. Необходимо заранее промерить общую длину труб, а также посчитать количество всевозможных фитингов (колен, тройников, заглушек и пр.). Для монтажа пластиковых труб понадобится всего три инструмента — рулетка, ножницы для труб и паяльник. На большинстве таких труб и фитингов есть лазерная перфорация в виде насечек и направляющих линий, что даёт возможность по месту выполнять монтаж правильно и ровно. Работая с паяльником, следует придерживаться только одного правила — после того как вы расплавили и состыковали концы изделий, ни в коем случае не прокручивайте их, если с первого раза не получилось припаять ровно, иначе возможна течь в этом месте. Лучше заранее потренируйтесь на кусочках, которые пойдут в отходы.
Циркуляционный насос
Как подобрать оптимальные параметры циркуляционного насоса для системы отопления?
Для нас важны два параметра: создаваемый насосом напор и его производительность.
На фото – насос в отопительном контуре.
С напором все не просто, а очень просто: контур любой разумной для частного дома протяженности потребует напора не более минимальных для бюджетных устройств 2 метров.
Простейший способ подобрать производительность – умножить объем теплоносителя в системе на 3: контур должен оборачиваться трижды за час. Так, в системе объемом 540 литров достаточно насоса производительностью 1,5 м3/час (с округлением).
Более точный расчет выполняется по формуле G=Q/(1,163*Dt), в которой:
- G – производительность в кубометрах в час.
- Q – мощность котла или участка контура, где предстоит обеспечить циркуляцию, в киловаттах.
- 1,163 – коэффициент, привязанный к средней теплоемкости воды.
- Dt – дельта температур между подачей и обраткой контура.
При пресловутой тепловой мощности котла в 36 КВт и дельте температур в 20 С производительность насоса должна составлять 36/(1,163*20)=1,55 м3/ч.
Иногда производительность указывается в литрах в минуту. Пересчитать несложно.
Расчет теплопотерь
Вот как следует производить вычисления:
Теплопотери через ограждающие конструкции
Для каждого материала, входящего в состав ограждающих конструкций, в справочнике или предоставленном производителем паспорте находим значение коэффициента теплопроводности Кт (единица измерения — Вт/м*градус).
Для каждого слоя ограждающих конструкций определяем термическое сопротивление по формуле: R = S/Кт, где S – толщина данного слоя, м.
Для многослойных конструкций сопротивления всех слоев нужно сложить.
Определяем теплопотери для каждой конструкции по формуле Q = (A / R) *dT,
Где:
- А — площадь ограждающей конструкции, кв. м;
- dT — разность наружной и внутренней температур.
- dT следует определять для самой холодной пятидневки.
Теплопотери через вентиляцию
Для этой части расчета необходимо знать кратность воздухообмена.
В жилых зданиях, возведенных по отечественным стандартам (стены являются паропроницаемыми), она равна единице, то есть за час должен обновиться весь объем воздуха в помещении.
В домах, построенных по европейской технологии (стандарт DIN), при которой стены изнутри застилаются пароизоляцией, кратность воздухообмена приходится увеличивать до 2-х. То есть за час воздух в помещении должен обновиться дважды.
Теплопотери через вентиляцию определим по формуле:
Qв = (V*Кв / 3600) * р * с * dT,
Где
- V — объем помещения, куб. м;
- Кв — кратность воздухообмена;
- Р — плотность воздуха, принимается равной 1,2047 кг/куб. м;
- С — удельная теплоемкость воздуха, принимается равной 1005 Дж/кг*С.
Приведенный расчет позволяет определить мощность, которую должен иметь теплогенератор системы отопления. Если она оказалась слишком высокой, можно сделать следующее:
- понизить требования к уровню комфорта, то есть установить желаемую температуру в наиболее холодный период на минимальной отметке, допустим, в 18 градусов;
- на период сильных холодов понизить кратность воздухообмена: минимально допустимая производительность приточной вентиляции составляет 7 куб. м/ч на каждого обитателя дома;
- предусмотреть организацию приточно-вытяжной вентиляции с рекуператором.
Заметим, что рекуператор полезен не только зимой, но и летом: в жару он позволяет сэкономить произведенный кондиционером холод, хотя и работает в это время не столь эффективно, как в мороз.
Правильнее всего при проектировании дома выполнить зонирование, то есть назначить для каждого помещения свою температуру исходя из требуемого комфорта. К примеру, в детской или комнате пожилого человека следует обеспечить температуру порядка 25-ти градусов, тогда как для гостиной будет достаточно и 22-х. На лестничной площадке или в помещении, где жильцы появляются редко либо имеются источники тепловыделения, расчетную температуру можно вообще ограничить 18-ю градусами.
Очевидно, что цифры, полученные в данном расчете, актуальны только для очень короткого периода — самой холодной пятидневки. Чтобы определить общий объем энергозатрат за холодный сезон, параметр dT нужно вычислять с учетом не самой низкой, а средней температуры. Затем нужно выполнить следующее действие:
W = ((Q + Qв) * 24 * N)/1000,
Где:
- W — количество энергии, требующейся для восполнения теплопотерь через ограждающие конструкции и вентиляцию, кВт*ч;
- N — количество дней в отопительном сезоне.
Однако, данный расчет окажется неполным, если не будут учтены потери тепла в канализационную систему.
Теплопотери через канализацию
Для приема гигиенических процедур и мытья посуды жильцы дома греют воду и произведенное тепло уходит в канализационную трубу.
Но в данной части расчета следует учитывать не только прямой нагрев воды, но и косвенный — отбор тепла осуществляет вода в бачке и сифоне унитаза, которая также сбрасывается в канализацию.
Исходя из этого, средняя температура нагрева воды принимается равной всего 30-ти градусам. Теплопотери через канализацию рассчитываем по следующей формуле:
Qк = (Vв * T * р * с * dT) / 3 600 000,
Где:
- Vв — месячный объем потребления воды без разделения на горячую и холодную, куб. м/мес.;
- Р — плотность воды, принимаем р = 1000 кг/куб. м;
- С — теплоемкость воды, принимаем с = 4183 Дж/кг*С;
- dT — разность температур. Учитывая, что вода на входе зимой имеет температуру около +7 градусов, а среднюю температуру нагретой воды мы условились считать равной 30-ти градусам, следует принимать dT = 23 градуса.
- 3 600 000 — количество джоулей (Дж) в 1-м кВт*ч.