Чем обработать медь от окисления: эффективные средства + способы защиты

Содержание:

Содержание в природе

В земной коре содержится 0,01 % меди. Распространение в природе сравнительно низкое. Встречается в свободном состоянии в виде самородков, иногда очень значительных размеров. Но руды самородной меди распространены сравнительно мало – их не более 5 % от общей добычи в мире.

Медь – один из элементов, образующих халькосферу, которая располагается между литосферой и земным ядром. В связи с выдавливанием халькофилов в литосферу вследствие магматических и гидротермальных процессов подавляющая часть меди (около 80 %) присутствует в земной коре в соединениях с серой, 15 % меди – в виде кислородных соединений: окислов, карбонатов, силикатов и прочих. Данные соединения являются продуктами выветривания первичных сульфидных медных руд.

Медь образует до 240 различных минералов, но только около 40 из них имеют промышленное значение.

Важнейшие для промышленности минералы – халькопирит (медный колчедан), халькозин (медный блеск), ковеллин, борнит, малахит, азурит, хризаколла, брошантит. Обычны арсениды, антимониды и сульфоарсениды меди.

Повышенное содержание меди свойственно средним и основным горным породам, а пониженное – карбонатным. Наибольшее распространение имеют простые и сложные сульфиды (первичные минералы). Они довольно легко растворяются при выветривании и высвобождают ионы меди. Кроме того, катионы меди обладают разнообразными свойствами и склонны к химическому взаимодействию с органическими и минеральными веществами. Они легко осаждаются различными анионами: сульфидом, карбонатом, гидроксидом. По этой причине медь в почвах относительно малоподвижна, и ее суммарное содержание в почвенных профилях варьирует незначительно.

Начальным состоянием распределения меди в почвах управляют два фактора: процессы почвообразования и материнская порода. Обычной чертой распределения меди в почвенном профиле является ее аккумуляция в верхних слоях. Это отражает ее биоаккумуляцию и влияние антропогенных факторов.

В почве различают

Ключевая реакция содержания меди в почве – комплексообразование с органическими соединениями. Гуминовые вещества образуют с медью растворимые и нерастворимые соединения.

Наиболее доступны для растений обменносорбированные и водорастворимые соединения меди.

Что такое коррозия металлов и сплавов

Под коррозией понимают процесс разрушения металла под действием агрессивных факторов окружающей среды. В той или иной степени ржавеют все металлы, сплавы, в результате чего на них появляются ржавчина и участки нарушения целостности (дыры). Портиться со временем способны и неметаллы: примером можно назвать старение резины или пластика от взаимодействия с кислородом, при частых контактах с водой, перепадами температур.

Основной причиной коррозии считается термодинамическая неустойчивость металла к влиянию физических факторов или химических веществ, которые присутствуют в контактной среде. По сравнению с железом медь окисляется намного меньше, но при увеличении температуры этот процесс значительно ускоряется. При регулярном нахождении в среде с температурой выше +100 градусов любой металл ржавеет в несколько раз быстрее.

Недостатки блестящего меднения с добавками:

  1. Высокая хрупкость блестящего медного покрытия
  2. Низкая пластичность блестящего медного покрытия
  3. Большие внутренние напряжения блестящего медного покрытия и резкое возрастание риска отслоения и образования «пузырей».

Выбор типа покрытия зависит от многих факторов. Фактор коррозионной стойкости рассмотрен в данной статье.

Было исследовано два состава электролита меднения:

1) Электролит меднения без добавок состава:

СuSO4  5 Н2О — 160 г/л

H2SO4 — 100 г/л

2) Электролит меднения с добавками состава:

СuSO4  5 Н2О — 160 г/л

H2SO4 — 100 г/л

органические добавки — по техпроцессам.

Коррозионные испытания проводились на двух пластинках из стали 3 с нанесенными слоями блестящей и матовой меди по 15 мкм каждая без дополнительной пассивации. Для качественного сцепления меди со сталью был использован подслой никеля 2 мкм.

Омедненые пластинки испытывались по ГОСТ 9.308 метод С в 3% растворе хлорида натрия на протяжении 7 дней.

Коррозионную стойкость на омедненых пластинках определяли приложив трафарет и подсчитав число квадратов с ржавчиной и без, где nC — число квадратов с ржавчиной, NC— общее число квадратов на поверхности образца.

Для каждого состава посчитали степень поражения и определили показатель коррозии в баллах.

Для стальной пластинки с матовым медным покрытием результаты коррозионной стойкости следующие:

nC = 40 квадратов, NC= 180 квадратов подставляем в формулу:

Xc=nc/Nc*100= 40/180*100=22.22 %, показатель коррозии 2 балла. Пониженно стойкое покрытие; глубинный показатель коррозии 0,1‒0,5 мм/годпоказатель коррозии 2 балла. Пониженно стойкое покрытие; глубинный показатель коррозии 0,1‒0,5 мм/год

Для стальной пластинки с блестящим медным покрытием результаты коррозионной стойкости следующие:

nC = 3 квадратов, NC= 180 квадратов подставляем в формулу (3.1)

Xc=nc/Nc*100= 3/180*100=1,66 %, показатель коррозии 6 балловпоказатель коррозии 6 баллов. Весьма стойкое покрытие, глубинный показатель коррозии 0,001‒0,005 мм/год

По результатам испытаний блестящее медное покрытие на стали значительно превзошло по коррозионной стойкости матовое медное покрытие на аналогичном стальном образце. Для дополнительного повышения коррозионной стойкости можно применить пассивацию меди или пропитку в полимерных составах, однако любые дополнительные способы обработки медного покрытия ухудшат его электропроводность.

Эффективные методы очистки меди

Провести чистку медных предметов несложно, для этого не понадобятся дорогостоящие средства. Вот самые популярные методики, применяемые в домашних условиях:

  1. Кетчуп. Взять немного томатного кетчупа, смазать им изделие, оставить на две минуты. После ополоснуть струей воды.
  2. Раствор для мытья посуды. Намылить хозяйственную губку обычным средством для посуды, тщательно протереть поверхность, смыть водой. Этот способ лучше всего подходит для изделий, которые лишь немного потускнели.
  3. Лимон. Натереть медную поверхность долькой лимона, после пройтись по ней щеткой с жесткими ворсинками и помыть водой.
  4. Уксус и мука. Влить в чашку немного уксуса, добавить муку до получения теста средней густоты. Смазать медь тестом, оставить до высыхания, потом удалить остатки, а изделие натереть мягкой тряпочкой.
  5. Уксус и соль. Налить в кастрюлю из нержавеющей стали уксус 9%, всыпать немного соли, дать закипеть. Огонь выключить, в раствор положить медный предмет, не убирать его до остывания жидкости. Этот способ подходит для сильно загрязненных поверхностей.

Химическая стойкость свинца.

Стандартный потенциал свинца равен -0,126В. Коррозионная устойчивость свинца во многом определяется устойчивостью продуктов его коррозии.

Свинец устойчив:

  • В серной кислоте и сульфатах;
  • В фосфорной кислоте и фосфатах;
  • В соляной кислоте до 10%;
  • В жестких водах с сульфатом кальция;
  • В кремниевой кислоте;
  • В индустриальных атмосферах с сероводородом, сернистым газом и серной кислотой.

Свинец неустойчив

  • В азотной кислоте;
  • В уксусной кислоте;
  • В щелочах;
  • В серной кислоте выше 96% и олеуме;
  • В горячей серной кислоте до 80%;
  • В соляной кислоте свыше 10%;
  • В подземных водах с органическими кислотами;
  • В подземных водах насыщенных углекислотой.

Классификация коррозионных процессов по условиям протекания коррозии.

  • Газовая коррозия протекает в газовой фазе с минимальным количеством влаги. Данная коррозия возникает при контакте металлов с агрессивными газами (галогены, кислород, оксид серы).
  • Атмосферная коррозия протекает в атмосфере воздуха или другого влажного газа.
  • Жидкостная коррозия – это коррозия, протекающая в различные рода жидкостях.
  • Подземная коррозия – это коррозия металла, возникающая в следствии неоднородностей почвы, грунта.
  • Коррозия в условиях криптоклимота происходит в условиях замкнутого пространства.
  • Радиационная коррозия вызвана действием радиационного излучения.
  • Морская коррозия возникает из-за депассивирующего свойства ионов хлора.
  • Структурная коррозия связанна со структурной неоднородностью металлов.
  • Коррозия, возникающая под действием блуждающих токов.

Химические свойства цинка

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d 10 4s 2 . Для цинка возможна только одна единственная степень окисления, равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН)2 обладают ярко выраженными амфотерными свойствами.

Цинк при хранении на воздухе тускнеет, покрываясь тонким слоем оксида ZnO. Особенно легко окисление протекает при высокой влажности и в присутствии углекислого газа вследствие протекания реакции:

Пар цинка горит на воздухе, а тонкая полоска цинка после накаливания в пламени горелки сгорает в нем зеленоватым пламенем:

При нагревании металлический цинк также взаимодействует с галогенами, серой, фосфором:

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует.

Цинк реагирует с кислотами-неокислителями с выделением водорода:

Особенно легко растворяется в кислотах технический цинк, поскольку содержит в себе примеси других менее активных металлов, в частности, кадмия и меди. Высокочистый цинк по определенным причинам устойчив к воздействию кислот. Для того чтобы ускорить реакцию, образец цинка высокой степени чистоты приводят в соприкосновение с медью или добавляют в раствор кислоты немного соли меди.

При температуре 800-900 o C (красное каление) металлический цинк, находясь в расплавленном состоянии, взаимодействует с перегретым водяным паром, выделяя из него водород:

Цинк реагирует также и с кислотами-окислителями: серной концентрированной и азотной.

Цинк как активный металл может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу и даже сероводород.

Состав продуктов восстановления азотной кислоты определяется концентрацией раствора:

На направление протекания процесса влияют также температура, количество кислоты, чистота металла, время проведения реакции.

Цинк реагирует с растворами щелочей, при этом образуются тетрагидроксоцинкаты и водород:

С безводными щелочами цинк при сплавлении образует цинкаты и водород:

В сильнощелочной среде цинк является крайне сильным восстановителем, способным восстанавливать азот в нитратах и нитритах до аммиака:

Благодаря комплексообразованию цинк медленно растворяется в растворе аммиака, восстанавливая водород:

Также цинк восстанавливает менее активные металлы (правее него в ряду активности) из водных растворов их солей:

Коррозия луженой меди

Луженая медь отличается превосходной  коррозионной стойкостью. Луженая медь  отлично служит даже под воздействием дождя, града, снега, не чувствительна к перепаду температуры окружающей среды. Атмосферная коррозия луженой меди весьма незначительна. Оловянное покрытие по отношению к меди является анодом, т.к. имеет более электроотрицательный потенциал. Если на нем нет никаких изъянов (пор, трещин, царапин), через которые медь контактирует с атмосферой – оно прослужит очень долго. Если же дефекты покрытия присутствуют – атмосферная коррозия луженой меди протекает по следующим реакциям:

А: Sn — 2e→ Sn2+ — окисление олова;

К: 2 H2О + O2 + 4e → 4 OH- — восстановление меди.

2 Sn + 2 H2О + O2 → 2 Sn(OH)2

Качественное оловянное покрытие продлевает срок службы луженой меди до 100 лет и более.

Влияние воды

Коррозия меди в воде и скорость протекания процесса будет зависеть от наличия оксидной пленки и объема растворенного в ней кислорода. Как правило, протекает ударный или точечный процесс. При этом скорость будет тем быстрее, чем большее количество кислорода содержится в воде. Также негативно будет влиять жидкость с содержанием ионов хлора и низким уровнем pH.

В общем сопротивление поверхности коррозийным воздействиям достаточно высоко, чему способствует наличие оксидной пленки, не позволяющая разрушающим элементом проникать в структуру металла. Слой оксида будет возникать при нахождении металла более 2 месяцев постоянного пребывания в воде. Оксидное покрытие может быть двух типов:

  • · Карбонат – зеленого оттенка. Принято считать наиболее прочным.
  • · Сульфат – темного цвета. Обладает рыхлой структурой и меньшей прочностью.

Металл часто используется при производстве различных трубопроводов. Однако, если протекающая по ним жидкость имеет контакт с алюминием, цинком, железом, то она значительно ускоряет их коррозию. Чтобы это предотвратить и защитить медь от коррозии опять же проводится лужение оловом.

Свойства меди

Медь – это самый первый металл, который стал использовать человек. Она золотистого цвета, а на воздухе покрывается оксидной пленкой и приобретает красно-желтый цвет, что отличает ее от других металлов, имеющих серый оттенок. Она очень пластична, обладает высокой теплопроводностью, считается отличным проводником, уступая только серебру. В слабой соляной кислоте, пресной и морской воде коррозия меди незначительная.

На открытом воздухе происходит окисление металла с образованием оксидной пленки, защищающей металл. Со временем она темнеет и становится коричневого цвета. Слой, покрывающий медь, называют патиной. Он изменяет свой цвет от коричневатого оттенка до зеленого и даже черного.

Зеленый налет

Нити вошерии можно встретить и на дне водоемов с быстротекущей водой, и в стоячих водоемах у самого берега, и в виде свободноплавающих скоплений нитей на поверхности воды, а также на сильно увлажненной почве, где она образует зеленые бархатистые дерно-винки

При сборе материала необходимо лопаточкой или широким ножом осторожно снять верхний слой почвы с зеленым налетом.

Сухой воздух при атмосферном давлении и комнатной температуре не взаимодействует с медью. Влажный воздух, содержащий углекислый газ, действует на ее поверхность, создавая на ней зеленые налеты основного карбоната меди . Это относится в особенности к отожженной меди. Это явление необходимо учитывать при актив ировке оксидных катодов в лампах с медными внутренними деталями, так как выделяющийся во время этого процесса кислород связывается медью, а впоследствии при высокой температуре освобождается и может отравить активированные катоды.

К химическим свойствам металлов и сплавов относится способность их вступать в реакцию с различными веществами. При взаимодействии металлов с кислородом воздуха и влагой происходит их коррозия ( разрушение): чугун ржавеет, бронза покрывается зеленым налетом , сталь при нагреве в закалочных печах окисляется, превращаясь в окалину, а в кислотах растворяется.

Итак, мы узнали, на какие составные части разлагается зеленый налет. Он образуется на медных предметах, поскольку в воздухе всегда есть и диоксид углерода, и пары воды. Зеленый налет называют патиной. Такая же соль встречается и в природе — это не что иное как знаменитый минерал малахит.

В масло опускают чистую сухую медную пластинку на двое суток, после чего ее вынимают. Если на поверхности пластинки появится зеленый налет , то это указывает на повышенную кислотность масла. Такое масло следует немедленно направить на исследование в лабораторию.

Стойкость меди к воздуху значительно выше, чем у железа. На воздухе медь не ржавеет, а постепенно покрывается тонким черным слоем сернистой меди. В сыром и содержащем углекислоту воздухе на меди появляется зеленый налет . К кислым жидкостям медь нестойка. Из щелочей на медь разъедающе действует аммиак. Из солей наибольшее действие на медь, так же как и на железо, оказывают соли соляной кислоты. Сплавы меди обладают большей химической стойкостью, чем чистая медь.

Стойкость меди к воздуху значительно выше, чем у железа. На воздухе медь не ржавеет, а постепенно покрывается тонким черным слоем сернистой меди. В сыро1м и содержащем углекислоту воздухе на меди появляется зеленый налет . К кислым жидкостям медь нестойка. Из щелочей на медь разъедающе действует аммиак. Из солей наибольшее действие на медь, так же как и на железо, оказывают соли соляной кислоты. Органические кислоты — уксусная, лимонная, муравьиная, масляная и др. — мало разъедают медь. Сплавы меди обладают большей химической стойкостью, чем чистая медь.

О важности чистки

Чтобы продлить срок использования вашего изделия, его нужно регулярно чистить.

Постепенно большинство типов бытовых приборов и других материалов могут потерять товарный вид и потускнеть из-за образования оксидной пленки.

Это красивое средство для состаривания посуды или других видов изделий, но многим присутствие патины не нравится.

Есть несколько наиболее распространенных методов очистки, помогающих снять патину и оставить основной материал без повреждений:

  • Специальные растворы для мытья посуды. В таком случае поверхность становится более восприимчивой к удалению оксидной пленки. Если она появилась недавно, снять продукты окисления можно будет, не прикладывая серьезных усилий.
  • Лимонная кислота. Может использоваться как в составе раствора, так и при простом воздействии на поверхность свежеразрезанной долькой. Патина удаляется быстро и эффективно.
  • Уксус. Оказывает такое же действие, как и лимон. Для улучшения эффекта, его часто смешивают с солью или мукой.

И это только часть методов, которые можно применять для борьбы с патиной.

Коррозийные свойства меди

Медь – металл с высокими пластическими свойствами, имеющий красно-золотистый цвет, а после удаления оксидной пленки – чуть розоватый. По электропроводности он уступает лишь серебру, также характеризуется высокой теплопроводностью. Благодаря низкому удельному сопротивлению медь применяется в электротехнике: идет на изготовление медных пластинок, проволоки, обмотки двигателей.

Медь – неактивный химический элемент, поэтому практически не взаимодействует с воздухом, водой (пресной, морской). Если воздух сухой, на поверхности материала формируется оксидная пленка толщиной до 50 мн. Медное изделие темнеет, становится коричневым или зеленоватым, это называется патиной. В ряде случаев патина воспринимается как декоративное покрытие. Интенсивность коррозии низкая при контакте с разбавленной соляной кислотой, но при реакции с рядом иных кислот, с галогенами, «царской водкой» металл окисляется с образованием карбоната меди.

Основные принципы лечения медной интоксикации

Все токсикологи сходятся на основной мысли, что практически не имеет смысла промывать желудок и удалять соединения меди и желудочно-кишечного тракта, поскольку при отравлении медью возникает такой симптом, как продолжительная и многократная рвота. Чтобы остановить эту рвоту, которая уже перестала очищать организм, но может вызвать кровотечение, вначале пострадавшему вводят внутримышечно противорвотные препараты, такие как Церукал и Метоклопрамид, внутривенно вводят изотонический раствор хлорида натрия и глюкозу.

В том случае, если произошло отравление солями меди, но рвоты не было, то обязательно необходимо промыть желудок через зонд. Вторым мероприятием будет внутримышечное введение 10 мл унитиола в виде 5% р-ра, а затем через каждые 3 часа необходимо подкалывать в мышцу по 5 мл этого препарата в течение 3 суток. Молекула унитиола содержит две активные группы, которые связывают и деактивируют медь. Кроме внутримышечного введения, рекомендована инфузия внутривенно капельно тиосульфат натрия по 100 мл 30 % р-ра ежедневно.

При развитии тяжелой гемоглобинурии, чреватой почечной недостаточностью, необходимо выполнить паранефральную новокаиновую блокаду, ввести 1 л гидрокарбоната натрия (4% р-ра внутривенно) для компенсации развивающегося закисления крови, или метаболического ацидоза. При необходимости пациенту по показаниям проводят неотложный (осттрый) гемодиализ.

Затем начинается применение комплексообразующих соединений, которые применяются для лечения болезни Вильсона-Коновалова. Это такие соединения, как пеницилламин и димеркапрол. При этом димеркапрол, несмотря на более низкую эффективность, необходимо применять в первую очередь, поскольку он вводится внутримышечно, а пеницилламин только лишь применяется внутрь в виде таблеток. Если у пациента до сих пор существует рвота, то пеницилламин просто будет весь извергнут наружу. Если пациент отравился растворимыми солями меди, то также применяется кальциево-динатриевая соль этилендиаминтетрауксусной кислоты (ЭДТА). После нормализации состояния назначается пеницилламин. Он предотвращает гемолитическое распадение эритроцитов, и хорошо выводится почками вместе со связанной им медью.

Поэтому унитиол и пеницилламин, или, точнее, Д-пеницилламин является основными антидотами при отравлении медью: унитиол – при остром, а пеницилламин – при хроническом, и он же пожизненно назначается пациентам с гепатолентикулярной дегенерацией. Для лечения отравлений он рекомендуется в дозировке до 1 – 1,5 г в сутки, в четыре приема. В том случае, если лечение начато своевременно, то тогда довольно быстро восстанавливается нормальная функция печени, но нельзя пеницилламином лечить интоксикацию слишком долго, поскольку у него есть много побочных эффектов, например токсическое влияние на кровь вплоть до развития апластической анемии.

История[]

Медные блоки были представлены на Minecraft Live 2020.
Официальный выпуск Java Edition
1.17 20w45a Медные блоки и их резные варианты добавлены в игру.
20w46a Текстура резного медного блока была изменена.
Медный блок теперь можно скрафтить из 4 медных слитков вместо 9.
20w48a Крафт любого варианта плиты из резного медного блока в результате даёт 6 плит вместо 4.
21w05a Названия стадий окисления медного блока «Lightly Weathered» (рус. Слегка окисленный), «Semi-Weathered» (рус. Полуокисленный) и «Weathered» (рус. Окисленный) были переименованы в «Exposed» (рус. Потемневший), «Weathered» (рус. Состаренный) и «Oxidized» (рус. Окисленный) соответственно.
Утопленники теперь дропают медные слитки, делая медные блоки возобновляемыми.
Различные варианты медного блока теперь можно изготовить в камнерезе.
Название с опечаткой «Weathered Copper BlocK» было исправлено на «Oxidized Copper Block».
Окисление теперь зависит от случайных тактов.
21w05b В оригинальной локализации названия «Copper Block», «Exposed Copper Block», «Weathered Copper Block» and «Oxidized Copper Block» были изменены на «Block of Copper», «Exposed Copper», «Weathered Copper» и «Oxidized Copper» соответственно. Идентификаторы также были обновлены.
21w11a Медный блок теперь можно вощить с использованием пчелиных сот, при этом воспроизводятся жёлтые частицы.
Раздатчик с пчелиными сотами теперь может вощить медные блоки.
Топором теперь можно соскабливать слои воска и окисления, при этом воспроизводятся белые частицы.
Удар молнии в медный блок теперь снимает с него окисление.
Вощёный медный блок теперь может использоваться для крафта 4 медных слитков
21w14a Вощёный окисленный медный блок и его резной вариант добавлены в игру.
Официальный выпуск Bedrock Edition
1.16.210 beta 1.16.210.57 Медные блоки и их резные варианты добавлены в игру.
Названия стадий окисления медного блока «Lightly Weathered» (рус. Слегка окисленный), «Semi-Weathered» (рус. Полуокисленный) и «Weathered» (рус. Окисленный) здесь называются «Exposed» (рус. Потемневший), «Weathered» (рус. Состаренный) и «Oxidized» (рус. Окисленный) соответственно.
Релиз Медные блоки недоступны в полном выпуске.
1.16.220 beta 1.16.220.52 Медные слитки теперь могут быть созданы только из неокисленного медного блока.
Вощёные медные блоки теперь можно обрабатывать в камнерезе.
ПКМ по медному блоку топором теперь соскабливает слои воска и окисления.
Удар молнии в молниеотвод теперь удаляет стадии окисления у ближайших медных блоков.
Релиз Медные блоки снова недоступны в полном выпуске.
1.16.230 beta 1.16.230.52 Вощёный окисленный медный блок и его резной вариант добавлены в игру.

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26Fe1s22s22p63s23p63d64s2, то есть железо относится к d-элементам,  поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH)2 преобладают основные свойства, у оксида Fe2O3 и гидроксида Fe(OH)3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей,  а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H2FeO4. Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах.  При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду,  выделяя из нее кислород.

Взаимодействие с простыми веществами

С кислородом

При сгорании в чистом кислороде железо образует, так называемую, железную окалину, имеющую формулу Fe3O4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe2O3. Реакция горения железа имеет вид:

3Fe + 2O2 =to=> Fe3O4

С серой

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Fe + S =to=> FeS

Либо же при избытке серы дисульфид железа:

Fe + 2S =to=> FeS2

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F2 =to=> 2FeF3 – фторид железа (lll)

2Fe + 3Cl2 =to=> 2FeCl3 – хлорид железа (lll)

2Fe + 3Br2 =to=> 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Fe + I2 =to=> FeI2 – йодид железа (ll)

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

2FeCl3 + 2KI = 2FeCl2 + I2 + 2KCl

2Fe(OH)3 + 6HI = 2FeI2 + I2 + 6H2O

Fe2O3 + 6HI = 2FeI2 + I2 + 3H2O

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

Взаимодействие со сложными веществами

С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H2SO4 (конц.)  и HNO3 любой концентрации):

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной  и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

2Fe + 6H2SO4 = ot=> Fe2(SO4)3 + 3SO2 + 6H2O

Fe + 6HNO3 =ot=> Fe(NO3)3 + 3NO2 + 3H2O

Обратите внимание на то,  что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

4Fe + 6H2O + 3O2 = 4Fe(OH)3

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 оС). т.е.:

Варианты медного блока

Чтобы создать медный блок, вам понадобится девять медных слитков, чтобы заполнить всю сетку крафта три на три.

Затем этот блок можно поместить в резчик по камню, чтобы продемонстрировать все его варианты и легко получить к ним доступ. Медь — отличный декоративный блок с несколькими спецэффектами.

Вощеные медные блоки

Если вы хотите избежать окисления медного блока при ударе молнии, например, вы можете объединить медный блок с небольшим количеством сот, чтобы создать вариант вощеного медного блока.

Такие блоки работают точно так же, когда их помещают в камнерез, но они не реагируют на молнию при ударе или с течением времени . Если вы хотите избавиться от воска, просто возьмите топор вощеный медный брусок.

Выветрившиеся медные блоки

Со временем медные блоки меняют цвет. Они могут быть поражены светом, чтобы внезапно полностью раскислиться , или они могут пройти медленный процесс выветривания, превратив несколько оттенков в бирюзовый из своего первоначального оранжевого цвета.

Стадии старения и окисления следующие, от наименее выдержанного до наиболее старого:

  • Блок меди: наиболее оранжевый, наименее выдержанный.
  • Exposed Copper: блеклый апельсин, едва выдержанный.
  • Выветрившаяся медь: блеклая бирюза, довольно состаренная.
  • Окисленная медь: наиболее бирюзовый, наиболее выдержанный.

Какие факторы могут замедлить процесс?

Существует ряд факторов, которые замедляют процессы коррозии алюминия, а некоторые из них останавливают подобное явление. Выделяют следующие:

Чтобы свойства алюминия, препятствующие коррозии, сохранялись, необходимо поддерживать кислотно-щелочной баланс. Диапазон должен составлять от шести до восьми единиц.
Считается, что чистый металл, без примесей, лучше противостоит агрессивной среде. Учеными были проведены эксперименты. По результатам можно сказать, сплавы чистого алюминия (90%) подвержены коррозии больше, чем сплав, содержащий 99% этого вещества. У первого варианта коррозия наступает в 80 раз быстрее, чем у второго сплава.
Чтобы в агрессивной среде металл дольше не терял свои свойства, его обрабатывают специальной краской. Можно использовать полимерный состав. После обработки появляется дополнительный защитный слой.
Если добавить в сплав при производстве 3% марганца, то появится возможность избежать коррозии алюминия.

Почему медные изделия требуется регулярно очищать?

Ковши из меди, турки, самовары отличаются высокой степенью тепловой проводимости, и потому нагревание в них протекает равномерно, а продукты будут приготовлены быстрее. Это обусловлено высокую популярность изделий в быту. Потребность в очистке медных предметов обусловлено утратой ими визуальной привлекательности спустя время. Особенно быстро начинают тускнеть и теряют естественный цвет изделия, которые находятся на воздухе или даже часто нагревающиеся.

Коррозия меди в виде оксидной пленки (патины) популярна лишь в тот момент, где требуется придание предметам винтажного облика, стилизация под старину. В обратном случае она будет портиться внешний вид посуды, утвари, а также статуэток и украшений. Чтобы устранять оксидный налет, элементы потемнения и вернуть прежний блеск, требуется время от времени чистить предметы. Также очищение требуется для того, чтобы исключить попадания в пищу вредоносных соединений, которые способы присутствовать в зеленом и черном слое.

Эффективные способы очистки меди

Произвести очищение медных предметов несложно, для этого не требуются дорогостоящие средства. Вот наиболее популярные методики, которые используют в домашних условиях:

  1. Кетчуп – возьмите немного кетчупа из томатов, смажьте им изделие и оставьте на пару минут. После сполосните струей чистой и прохладной воды.
  2. Раствор для мытья посуды – следует намылить хозяйственную губку простым средством для посуды, тщательно протирайте поверхность и смывайте водой. такой метод лучше всего подойдет для изделий, которые лишь слегка потускнели.
  3. Лимон – следует натереть медную поверхность лимонной долькой, а после пройдитесь по нему щеточкой с жесткими ворсинками и помойте водой.
  4. Мука и уксус – влейте в чашку малое количество, добавьте муки до получения теста со средней густотой. Смажьте медное изделие посредством теста, оставьте до просыхания, а после удалите остатки. После остается натереть изделия мягкой тряпкой.
  5. Соль и уксус – налейте в кастрюльку из нержавеющей стали уксус 9%, всыпьте немного соли и доведите до кипения. Огонь следует выключить, закинуть в раствор предмет из меди, не убирать его до остывания жидкости. Данный способ подойдет для очень загрязненных поверхностей.

А теперь рассмотрим, как чистить медные монеты.

Очистка медных монет

Следует помнить о том, что иногда слой патины помогает придавать монетам более винтажный и благородный внешний вид, и потому удалять его стоит не всегда. Некоторые де стараются искусственно состарить деньги домашним методом. Для этого возьмите литр дистиллированной воды, 5 грамм марганцовки (аптечной) и 50 грамм медного купороса. Раствор следует нагреть, не доводя до кипения, бросить в него монеты, оставить до получения требуемого оттенка. Для закрепления полученного эффекта просохшие деньги обработайте все смесью спирта и бензола (1 к 1). После монеты обретают красивый состаренный вид и способны украшать любые коллекции антикварных предметов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector